
July 2022

Version 1.0.0

API Requirements
for Dutch Healthcare

Description Status Publication date

V0.13 First concept published on Mural Draft 22-03-2022

V0.14 Added requirement SD010 Draft 28-03-2022

V0.15 Added paragraph 3.3 (SDK) and new requirements for
documentation, discoverability, onboarding, design
rules and API security

Draft 04-04-2022

V0.16 Updated requirements OB004, OB005 and TS001.
Added many requirements for Lifecycle Management.
Changed Semantically Standardized (SSA) to Fully
Standardized (FSA). Added FHIR (Fast Healthcare
Interoperability Resources) and IHE (Integrating the
Healthcare Enterprise) abbreviations. Added
paragraph 1.1 ‘Intended audience’. Added paragraph
3.2 ‘Specification, implementation and deployment’.
Added paragraph 3.3 ‘Who uses an API’. Added
paragraph 3.4 ‘What are requirements. Added
paragraph 3.5 ‘API lifecycle’. Added paragraph 3.8 ‘A
layered API typology’. Added paragraph 3.9 ‘Exchange
paradigms’. Updated paragraph 3.16.2 and 3.16.3 to
describe levels of standardization in more detail.
Added paragraph 3.14 on the contents of API
specifications and paragraph 3.15 on the contents of
API documentation. Renamed RESTful API design rules
to ‘API design rules’ and created subcategories for
generic rules, SOAP based rules and RESTful rules

Draft 04-05-2022

V0.17 Added requirement tables for category ‘Security’.
Added substantiation for the HTTP/ WEB API
restriction in paragraph 3.7 (API protocols and API
styles). Adjusted paragraph 3.8 (Al layered topology of
APIs) so that experience APIs can be based on/ built on
System APIs as well as Process APIs. Added AG001 to
AG004 requirements in the Agreements category.
Added LM007 and LM008 requirements to API lifecycle
management & versioning. Added paragraph 2.3
(Versioning of this specification). Renamed ‘HCIM
compliance’ to ‘Health Information Standards
compliance’ (paragraph 3.17) and added chapter 12 on
Health Information Standards compliance

Draft 23-05-2022

Versions

V0.18 Removed ‘Changes to the length of data returned
within a field’ from paragraph 3.7.3 (non-breaking
changes). Added sub requirements for English
translations to SD009. Added ‘intentions’ to all
requirements in the Agreements category. Removed
‘measurable’ from AG002. Clarified relationship with
GDPR in AG003. Added paragraph 3.5 (Relationship
with (Dutch) Health Information Standards). Added
requirements table to paragraph ‘API requirements
categories’. Added two requirements to the ‘Health
Information Standards compliance’ category

Draft 13-06-2022

V0.19 Updated paragraph ‘Fully Standardized API
standardization level’. Added requirements IS001-
IS003 to paragraph ‘Health Information Standards
compliance’. Added abbreviations to the table in
paragraph ‘Abbreviations used in this specification’

Draft 28-06-2022

V0.2 Updated requirements in the ‘Health Information
Standards compliance’ category in accordance with
conclusions from working group meeting 04-07-2022.
Many textual adjustments. Added paragraph
‘Relationship with Dutch API Library for Healthcare’.
Added requirement SD014 to Documentation &
Specification

Draft 04-07-2022

V1.0.0 Added call to avoid breaking changes to paragraph
‘Breaking changes’. Various textual improvements.

Final 11-07-2022

Index
1. Introduction 8

1.1. Intended audience 9

2. Notational Conventions 10
2.1. Abbreviations used in this specification 11
2.2. Requirement identification 13
2.3. Versioning of this specification 13

3. Definitions and scope 14
3.1. What is an API? 15
3.2. Specifications, implementations, and deployments 15
3.3. Who uses an API? 15
3.4. What are API requirements? 18
3.5. Relationship with (Dutch) Health Information Standards 18
3.6. Relationship with the Dutch API library for healthcare 17
3.7. API lifecycle 17

3.7.1. API versioning
3.7.2. Breaking changes
3.7.3. Non-breaking changes

3.8. Using a Software Development Kit (SDK) for easy access to APIs 19
3.9. API protocols and API styles 19
3.10. A layered typology of APIs 20

3.10.1. Consequences for API design and specification
3.11. Exchange patterns 21
3.12. Exchange paradigms 22

3.12.1. Consequences for API design and specification
3.13. Internal and external API usage 23
3.14. Unrestricted and restricted API usage 23
3.15. Roles involved with the development, exploitation and use of APIs 24
3.16. The contents of an API specification 26
3.17. The contents of API documentation 27
3.18. API levels of standardization 27

3.18.1. ‘Open API’ standardization level
3.18.2. ‘Technically standardized API’ standardization level
3.18.3. ‘Fully standardized API’ standardization level

3.19. API requirement categories 30

4. API specification & documentation 31
4.1. API documentation MUST be publicly and freely available 33
4.2. API documentation MUST provide examples of how to use the API 33
4.3. API documentation SHOULD provide examples of input and output data 33
4.4. API documentation SHOULD include a FAQ page for API client developers 34
4.5. API documentation MAY specify cases in which API usage is not applicable 34
4.6. API server developers and deployers MAY be active on developer forums to assist API
 client developers and deployers with the correct usage of APIs 34
4.7. API server developers MAY provide API client developers an SDK for easy access to
 deployed APIs 35
4.8. API specifications SHOULD be machine readable and allow for automated code
 generation 35
4.9. API documentation MUST be published in English 35
4.10. Documentation MUST provide (references to) evidence to back up any compliance
 claims made 36
4.11. Content relationship MUST be described in API documentation 36
4.12. API documentation MUST describe the availability and usage of operations 36
4.13. API versioning policy MUST be documented 37
4.14. API specifications MUST cover the rationale behind the exchange paradigm used by the API 37

5. API testability 38
5.1. Public test tooling MUST be freely available for test purposes 39

6. API discoverability 40
6.1. API specifications SHOULD be published in the Dutch API library for healthcare 41
6.2. API implementations SHOULD be published in the Dutch API library for healthcare 41
6.3. API deployments SHOULD be published in the Dutch API library for healthcare 42

7. API onboarding 43
7.1. All API onboarding policies, criteria and procedures MUST be documented 44
7.2. API onboarding SHOULD be an online self-service process 45
7.3. API onboarding MAY require a review of the client system and API client developer
 organization 45
7.4. An Information Disclosure Statement MUST be provided whenever API-onboarding
 requires the API client developer to provide information on the client system and/or client
 developer organization 45
7.5. An API offboarding procedure MUST be provided 46
7.6. All API offboarding policies, criteria and procedures MUST be documented 46

5 API Requirements for Dutch Healthcare Index

8. API Lifecycle management and versioning 47
8.1. API specifications MUST be marked deprecated when they are no longer recommended
 for use 48
8.2. API specifications MUST be marked retired when they are no longer supported 49
8.3. API implementations MUST be marked deprecated when they are no longer
 recommended for use 49
8.4. API implementations MUST be marked retired when they are no longer supported 50
8.5. API deployments MUST be marked deprecated when they are no longer recommended
 for use 50
8.6. API deployments MUST be marked retired when they are no longer supported 51
8.7. An API client MUST be designed to handle non-breaking changes 51
8.8. An API specification MUST comply with Semantic Versioning 2.0.0 51

9. API agreements 52
9.1. API Service Levels MUST be openly and freely available 53
9.2. API Access Restriction Policies MUST be openly and freely available 54
9.3. Data Processing Policies MUST be openly and freely available 55
9.4. Commercial charges relating to the use of APIs by API client developers and API client
 deployers MUST be predictable and openly and freely available 55

10. API design rules 56
10.1. Compliance with national API design rules 57
10.2. Generic 57

10.2.1. Interfaces MUST be defined in English
10.2.2. Developers MUST only apply standard HTTP methods
10.2.3. Developers MUST adhere to HTTP safety and idempotency semantics for
 operations
10.2.4. Server communication MUST remain stateless
10.2.5. Content relationship MUST be predictably implemented
10.2.6. Operations MUST be predictably implemented
10.2.7. API version MUST be accessible
10.2.8. APIs MUST at least support the DEFLATE and gzip compression algorithms
10.2.9. APIs MUST support the use of HTTP accept-encoding and content-encoding
 header fields for negotiating compression
10.2.10. JSON formatted content SHOULD comply to RFC8259 or its successor
10.2.11. APIs SHOULD be based on the NOTIFIED PULL exchange pattern rather than the
 PUSH exchange pattern
10.2.12. System APIs SHOULD be designed independent of specific use cases and types of
 client systems or users
10.2.13. Process APIs SHOULD be designed to reuse System APIs
10.2.14. Experience APIs SHOULD be based on Process APIs
10.2.15. System APIs SHOULD be based on the operations, messaging, or resource
 paradigm rather than the document paradigm

6 API Requirements for Dutch Healthcare Index

10.3. SOAP 65
10.3.1. APIs MAY use MTOM/XOP for formatting binary data
10.3.2. API clients MUST support MTOM/XOP formatting of binary data

10.4. RESTful 65
10.4.1. APIs MUST use nouns to name resources
10.4.2. APIs MUST use singular nouns to name collection resources
10.4.3. APIs MUST hide irrelevant implementation details
10.4.4. APIs MUST support both JSON and XML formatting
10.4.5. API clients MUST at least support JSON or XML formatting
10.4.6. APIs MAY support BSON formatting
10.4.7. APIs MUST use the Accept header for content negotiation
10.4.8. APIs MUST use the Content-Type header for content negotiation

11. API security 70
11.1. Generic 71

11.1.1. API specifications MUST comply with Dutch NCSC guidelines for web applications
11.1.2. API implementations MUST comply with Dutch NCSC guidelines for web
 applications
11.1.3. API deployments MUST comply with Dutch NCSC guidelines for web applications
11.1.4. API deployments MUST comply with Dutch NCSC guidelines for Transport Layer
 Security
11.1.5. An API MUST provide audit logging conforming to NEN7513
11.1.6. Specifications for ‘System APIs’ MUST use authentication and authorization
 models that are not specific to a use case or (type of) client or user
11.1.7. APIs MUST use fully standardized models for identification and authentication
11.1.8. All tokens used for client authentication MUST be signed using asymmetrical
 encryption
11.1.9. APIs MUST use generic services/functions

11.2. SOAP 74
11.2.1. APIs SHOULD use WS-Security to ensure message confidentiality and integrity
 for adding security tokens
11.2.2. APIs SHOULD use the SAML Token Security Model

11.3. RESTful 75
11.3.1. APIs MUST comply with RFC7523 or its successor for client authentication and
 for requesting oAuth2 access tokens
11.3.2. APIs SHOULD use OpenID Connect to achieve Single-Sign-On when requesting
 oAuth access tokens
11.3.3. JWT tokens used for client authentication and authorization grants MUST
 comply with RFC7515 and RFC7518, or its successors

12. Health Information Standards compliance 77
12.1. In order to be fully standardized, an API specification MUST be approved by an
 authoritative body 78
12.2. In order to be fully standardized, an API implementation MUST be approved by an
 authoritative body during a formal testing and qualification process 78
12.3. All API input and output data SHOULD comply with ZIB specifications 79

7 API Requirements for Dutch Healthcare Index

Introduction
1

8 API Requirements for Dutch Healthcare

This specification sets out requirements for Application Programming Interfaces (APIs) in Dutch
Healthcare. The importance of complying with a common set of requirements and hence the
value of this specification is to:

– Promote transparency by setting clear requirements for documentation, testability,
discoverability and API onboarding procedures and agreements

– Harmonise API requirements and design between different (national) programs for Health
Information Exchange and patient access to health information

– Guarantee a certain level of quality for all APIs included in the Dutch API library for
healthcare

– Promote innovation through the availability of system data and by exposing application
functionality.

APIs that conform to the requirements in this specification are permitted for inclusion in the
Dutch API library for healthcare. APIs that are included in the Dutch API library for healthcare are
more discoverable and are likely to meet the requirements in this specification. Therefore, they
meet a certain level of quality.

This specification has been developed as part of the Nictiz API strategy.

1.1. | Intended audience
The intended audience for this specification is:
– Technical users and developers
– Policy makers

9 API Requirements for Dutch Healthcare Introduction

Notational
Conventions
2

10 API Requirements for Dutch Healthcare

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as
described in [RFC2119].

2.1. | Abbreviations used in this specification
The following abbreviations are used in this specification:

11 API Requirements for Dutch Healthcare Notational Conventions

API Application Programming Interface: used to allow two or more applications
to 'talk to each other'

BSON Binary JSON: an optimized version of JSON

CDA Clinical Document Architecture: an HL7 standard

CORBA Common Object Request Broker Architecture: a standard defined by the
Object Management Group (OMG) that enables software components to
communicate over a network

DCOM Distributed Component Object Model: a Microsoft technology that allows
Microsoft 'COM components' to communicate over a network

DEFLATE A standard for data compression

EHR Electronic Health Record

FHIR Fast Healthcare Interoperability Resources: an HL7 standard

FSA ‘Fully standardized API' level of standardization

GDPR General Data Protection Regulation: European privacy law

GraphQL A query language for APIs

gRPC A remote procedure call framework that leverages the HTTP/2 protocol

GZIP A standard for data compression

HIE Health Information Exchange

HTTP Hyper Text Transfer Protocol: the protocol that fuels the internet

IETF Internet Engineering Taskforce: the organization that creates standards for
the internet

IHE Integrating the Healthcare Enterprise: a worldwide organization for
improving system interoperability in healthcare

JSON JavaScript Serialized Object Notation: a standard for formatting data

LZ4 A standard for data compression

MedMij Dutch standard for exchanging health data between Personal Health Record
systems and healthcare provider systems

https://datatracker.ietf.org/doc/rfc2119/

12 API Requirements for Dutch Healthcare Notational Conventions

NEN Royal Netherlands Standardization Institute

NHS National Health Service: government funded national health services in the
UK

NUTS A Dutch foundation that develops technical standards for Health
Information Exchange

OA ‘Open API' level of standardization

OASIS Organization for the Advancement of Structured Information Standards: an
international consortium that promotes the adoption of open standards in
computing

oAuth A standard/ framework for authorization

OIDC OpenID Connect: a standard for authentication

PACS Picture Archiving and Communication System

RFC Request For Comments; a purely technical document published by the
Internet Engineering Taskforce (IETF) or other standardization
organizations. An RFC can be informational, or it can be a standard

SDK Software Development Kit

SemVer Semantic Versioning; a specification for versioning

SOAP Simple Object Access Protocol: a remote procedure call framework on top
of HTTP

TLS Transport Layer Security: a standard used to secure electronic
communications

TSA ‘Technically standardized API' level of standardization

TSV Taskforce Samen Vooruit; a collaboration of vendors that develops and
promotes Health Information Exchange standards for Dutch healthcare

URI Uniform Resource Identifier; a unique sequence of characters that identifies
a logical or physical resource used by web technologies.

Wabvpz Wet Aanvullende Bepalingen Verwerking Persoonsgegevens in de Zorg: a
Dutch law that contains additional privacy regulations for the electronic
exchange of healthcare data

WGBO Wet op de Geneeskundige Behandel Overeenkomst: a Dutch law that
regulates the relationship between patients and care providers

WS-security A set of standards for web service security

XDS Cross Enterprise Document Exchange: an IHE integration profile

ZIB Zorg Informatie Bouwsteen: the Dutch version of Health and Care
Information Models (HCIM)

2.2. | Requirement identification
Requirements have unique and permanent numbers. In the event of requirements being
deprecated or restructured, they are removed from the list. Therefore, gaps in the sequence can
occur. New requirements will always get a new and higher number. When the new requirement
supersedes an existing requirement, this will be referenced in the new requirement by adding a
header “Supersedes:”.

2.3. | Versioning of this specification
This specification follows the Semantic Version 2.0.0 (SemVer) specification for versioning. This
means that:

– This specification has a version consisting of three parts: MAJOR.MINOR.PATCH
– The MAJOR number is at least incremented each time requirements are added or changed in

such a way that API specifications, API implementations or API deployments that complied
with the previous MAJOR version of this specification, don’t comply with the latest version

– The MINOR number is at least incremented each time requirements are added or changed in
such a way that API specifications, API implementations and API deployments that complied
with the previous MINOR version of this specification, still comply with the new version

– The PATCH number is incremented each time textual changes occur that have no influence on
the actual meaning of the requirements in this specification.

13 API Requirements for Dutch Healthcare Notational Conventions

Definitions
and scope
3

14 API Requirements for Dutch Healthcare

3.1. | What is an API?
The term ‘API’ refers to both a formal specification and a piece of software conforming to that
specification. Both perspectives are used interchangeably, but although an API specification can
exist without its actual implementation in software, the reverse is not possible. On the other
hand, a specification without any implementation in actual software does not (yet) represent
real value. A third possible perspective is the deployment perspective. In this case an API can be
viewed as a service that is deployed by some organization to provide specific value for its clients.

No matter the perspective, the purpose of an API is to allow two or more applications to ‘talk to
each other’. These applications can be located on the same ‘machine’, or they can be on different
remote machines, connected through some kind of network using some kind of communication
technology.

3.2. | Specifications, implementations, and deployments
Due to the different perspectives on what an API is, this specification differentiates between
API specifications, API implementations and API deployments.

An API specification is a formal specification of the API. The specification can be used to
construct an API implementation (software) that complies with the specification. It can also
be used to develop an API client (more software) that uses the implementation. The API
specification can be viewed as a contract between the API implementation and an API client.

An API implementation is the software code that implements the specification. It is (part of) a
specific software product created by a specific software developer (organization).

An API deployment is an instance of the software; the actual service deployed by some
organization to provide value for its clients. A specific deployment has a specific endpoint-
address (a URL in most modern APIs) that API clients use to access the API implementation.

3.3. | Who uses an API?
API specifications are used by a ‘competent developer’ to create an API implementation or
an API client. A competent developer is a software developer that has experience using the
technologies and (healthcare-specific) standards the API exploits and has basic knowledge of
the healthcare domain in general and the specific value the API provides.

API implementations are used by API clients. Both are pieces of software that need to ‘talk to
each other’.

API deployments are used by API client deployments and form a ‘service provider’/ ‘service
consumer’ pair.

15 API Requirements for Dutch Healthcare Definitions and scope

3.4. | What are API requirements?
API requirements are requirements for specifying (API specifications), implementing (API
implementations), deploying (API deployments) and using (API clients) an API. In this
specification the following conventions are applied when formulating requirements:

– An API requirement SHOULD not overlap with existing rules and regulations. Compliance
with rules and regulations is assumed.

– Even more important, it MUST NOT contradict existing rules and regulations.
– It SHOULD be reasonably possible to apply to API requirements. A requirement should not

require the impossible.

Many requirements have sub-requirements that conform to the same conventions.

Whenever possible, requirements in this specification are based on or refer to (inter)national
requirements and policies, such as the Dutch National API strategy and national API design rules,
international standards and RFCs and policies like the NHS Open API Architecture Policy1.

3.5. | Relationship with (Dutch) Health Information Standards
According to the Dutch competence centre for electronic exchange of health and care
information (Nictiz), a Health Information Standard is a cohesive specification of2:

– A use case or a combination of use cases and interaction patterns
– Dataset(s) used within these interactions
– Information models such as HCIMs (Dutch ‘Zorg Informatie Bouwstenen’ or ZIBs)
– Terminologies
– Communication standards such as HL7 CDA and HL7 FHIR (profiles)

As such, a Health Information Standard does not include technical details that are necessary
ingredients of an API specification, such as:

– API signature and semantics
– Identification and authentication of entities
– Security and transport mechanisms such as addressing
– Other required technical parts of an API specification and API documentation as described in

paragraphs 3.15 and 3.16

However, many APIs implement (parts of) Health Information Standards. An API is said to
‘implement a Health Information Standard’ when its specification, implementation and
deployment comply with the requirements of that Health Information Standard.

16 API Requirements for Dutch Healthcare Definitions and scope

1| See: https://www.england.nhs.uk/wp-content/

uploads/2018/09/open-api-policy.pdf

2| See: https://www.nictiz.nl/wp-content/uploads/2021-Paper-

Informatiestandaarden-Nictiz.pdf

https://www.england.nhs.uk/wp-content/uploads/2018/09/open-api-policy.pdf
https://www.england.nhs.uk/wp-content/uploads/2018/09/open-api-policy.pdf
https://www.nictiz.nl/wp-content/uploads/2021-Paper-Informatiestandaarden-Nictiz.pdf
https://www.nictiz.nl/wp-content/uploads/2021-Paper-Informatiestandaarden-Nictiz.pdf

17 API Requirements for Dutch Healthcare Definitions and scope

3.6. | Relationship with the Dutch API library for healthcare
The Dutch API library for healthcare contains API specifications, implementations and
deployments that meet the requirements in this specification at a particular level of
standardization (see 3.18 for information on API levels of standardization). The API library
promotes the findability of APIs that meet the requirements in this specification.

3.7. | API lifecycle
The API lifecycle consists of four phases:

– Create: developing the API specification and implementation
– Deploy: Deploying the API so it can be used by API clients
– Deprecate: Mark the API specification, implementation, or deployment as being removed at a

future date
– Retire: remove the API specification, implementation and/or deployment

When developing (Create) an API, especially an API specification targeted at the highest level of
standardization (see ‘API levels of standardization’), it is important to include the viewpoints and
insights of all stakeholders. API development is therefore often considered to be a community
effort.

It is important to mitigate the effects of API changes on API clients. Mitigation includes clear
communication when deprecating and retiring an API, but also includes preventing client
applications from breaking due to changes to a deployed API.

This specification includes requirements for all phases of the API lifecycle and includes
requirements for lifecycle management and API versioning.

3.7.1. | API versioning
Updating an API’s version is an important measure to help API clients adapt to API changes. Most
APIs use the Semantic Versioning (SemVer) scheme3 and update the API’s major version when
introducing breaking changes. Non-breaking changes to the API are often reflected by an update
in the API’s minor version or patch version.

3.7.2. | Breaking changes
A breaking change to an API is any change that can break a client application. Usually, breaking
changes involve modifying or deleting existing parts of an API or adding new required parts.
A breaking change can take place in an API specification, API implementation and in an API
deployment.

3| See https://semver.org/

https://semver.org/

Examples of breaking changes are:

– Deleting a resource or operation
– Removing an allowed parameter, request field or response field
– Modifying a resource or method URI
– Modifying a field name
– Adding required query parameters without default values
– Introducing a new validation
– Modifying authorization
– Modifying rate-limiting
– Removing TLS (Transport Layer Security) versions or supported encryption methods
– Modifying data formats, encodings, or compression formats

If the intended functionality of an API (method) changes, this might also break the client
application and therefore it is considered a breaking change. For example, if a DELETE request
previously used to archive a resource but now hard deletes the resource, the change potentially
breaks client functionality that is supposed to archive a resource.

Breaking changes should be avoided whenever possible.

3.7.3. | Non-breaking changes
Non-breaking changes are changes that cannot be expected to break a client application. Adding
optional parts to an API is never considered a breaking change. Examples of non-breaking
changes are:

– Addition of new endpoints
– Addition of new resources or operations to existing endpoints
– Addition of new fields in the following scenarios:

– New fields in responses
– New optional request fields or parameters
– New required request fields that have default values

– Addition of optional query parameters
– Changes to the order of fields returned within a response
– Addition of an optional request header
– Removal of redundant request header
– Changes to the overall response size
– Changes to error messages.

Requirement LM007 states that API clients MUST be designed to handle non-breaking changes.

18 API Requirements for Dutch Healthcare Definitions and scope

19 API Requirements for Dutch Healthcare Definitions and scope

3.8. | Using a Software Development Kit (SDK) for easy access
 to APIs
While APIs can be consumed using any platform or programming language, Software
Development Kits make it easier to access APIs from a particular platform and/or language of
choice. An SDK is usually made up of one or more software libraries, tools, and documentation.
For example, Microsoft provides SDKs for accessing Azure APIs from several different platforms,
including iOS, Android, JavaScript, and .NET. Another example is the Facebook SDK for
integrating Facebook features in games built on the Unity platform.

This specification does not require the provision or use of an SDK to access an API. Nevertheless,
this specification does include requirements in case an SDK is provided.

3.9. | API protocols and API styles
This document specifies requirements for APIs that are built on top of the HTTP protocol.
HTTP, or Hyper Text Transfer Protocol, is the protocol that fuels the World Wide Web. It is a
high-level protocol that provides mechanisms for communication between clients and servers
with requests and responses. The best-known HTTP client is a web browser that is used to
communicate with web servers, requesting data and web pages from web servers or sending
user input to web servers.

The reason for restricting this specification to HTTP-based APIs is threefold:

1. The world has been transitioning to the use of HTTP-based APIs ever since the web 2.0 era at
the beginning of the 21st century. Therefore most modern API technologies that are based on
the HTTP protocol and legacy technologies, such as CORBA and DCOM, are slowly but surely
disappearing from the global arena

2. As a result of this, many (if not most) standards for secure communication are based on or
are working in accordance with the HTTP protocol. Examples are the numerous RFCs for
authorisation (like oAuth2.0) and authentication (like OpenID Connect), as well as stacks
of security protocols such as WS-Security. Other examples include HTTP-header based
content negotiation schemes and protocols for distributed identity management such as the
Verifiable Credentials HTTP API.

3. Modern development tools (as well as developer training materials) are optimized for
building applications that leverage the HTPP protocol and the various design patterns and
protocols that work with HTTP or are built on top of HTTP.

APIs that use the HTTP protocol are often referred to as WEB APIs. WEB APIs are used to
communicate between applications over the internet but can also be used for communication
over private networks or even between applications on the same machine. WEB APIs are often
divided into two groups: SOAP-based APIs and RESTful APIs. SOAP is a protocol on top of HTTP

20 API Requirements for Dutch Healthcare Definitions and scope

(amongst others) while REST is an architectural style that leverages plain HTTP commands
(verbs) for communication between the API client and the API server. SOAP is often associated
with the WEB 1.0 era while today’s modern WEB APIs are edging towards the REST architectural
style. Nevertheless, both SOAP-based APIs and RESTful APIs coexist and many existing and
successful initiatives for health information exchange are based on SOAP APIs. Newer WEB API
technologies and styles, like GraphQL and gRPC, are rising constantly.

This specification strives to provide requirements that apply to all flavours of WEB APIs.
However, its focus will be on REST APIs simply because of its growing popularity in Health IT.
For example, the popular HL7 FHIR API specification is based on the REST architectural style.

3.10. | A layered typology of APIs
It is common to differentiate between three categories of APIs: system APIs, process APIs
and convenience or experience APIs4. This differentiation is based on design principles like
‘separation of concerns’ and the need for reusability of specifications and software components
such as APIs.

System APIs are atomic APIs. They expose ‘raw’ access to data and functionality from a system of
record. They cannot be divided into smaller parts without losing usefulness and meaningfulness:
you cannot create a meaningful API that exposes the first half of a medical diagnosis or one
that creates an outpatient appointment for a particular date without specifying the time.
Often, System APIs are exposed for internal use only (see ‘Internal and external API usage’). API
specifications for System APIs should not be specific to a particular business purpose or ‘use
case’. Neither should they be specific to a particular type of user or a particular type of system.

In healthcare, system APIs provide access to specific data and functionalities in systems
like electronic health records, medical imaging systems, Hospital Information Systems, and
many others. Many FHIR resources can be used to standardize system APIs. FHIR resource
specifications do not define authorization/access control or the authentication of users and
clients, which allows them to be used in many different use cases for several types of users.

Process APIs provide a means of combining data and orchestrating multiple system APIs for
a specific business purpose. Note that process APIs can combine system APIs from a single
backend system but also from a variety of backend systems.

In healthcare, the difference between system APIs and process APIs becomes clear when
you consider that many healthcare business processes require the combining of data and/
or functionality from different systems. For example, transferring a patient from a hospital to
a homecare provider often requires combining data from different systems, such as an EHR
(Electronic Health Record) system and a PACS system amongst others. A process API that
supports the transfer process (for example based on the Dutch eOverdracht specification) uses
the system APIs of these ‘systems of record’ to expose a single coherent dataset to the API client.

4| The Dutch API strategy

(https://docs.geostandaarden.nl/api/API-Strategie/) uses this

differentiation which was originally proposed by MuleSoft

(https://www.mulesoft.com/resources/api/types-of-apis)

https://docs.geostandaarden.nl/api/API-Strategie/
https://www.mulesoft.com/resources/api/types-of-apis

21 API Requirements for Dutch Healthcare Definitions and scope

The latter being a system deployed by (or on behalf of) the homecare provider. Process API
specifications for healthcare often define specific methods for authenticating clients/users and
define specific authorization/access control methods.

The third category of APIs, convenience APIs or experience APIs, are tailored to a specific kind of
usage. For example, an experience API could be tailored to mobile devices and provide mobile-
friendly ways of formatting and paginating data. Experience APIs use System APIs or process APIs
but format the output in such a way that it caters to the needs of a specific (type of) API client.

In healthcare, experience APIs are often representations of business data and/or functionality
to a specific Healthcare Information Exchange (HIE) standard, such as a FHIR, or IHE XDS. For
example, the previous ‘eOverdracht’ transfer example could be expressed using two experience
APIs: one based on FHIR notifications and compositions and the other on IHE DSUB notifications
and XDS document exchange.

This specification covers all types of APIs and sets out requirements for reusing APIs of a lower
layer.

3.10.1. Consequences for API design and specification
The layered approach to APIs has consequences for API design and specification in healthcare.
Specifications of APIs that support transferring patients (process APIs), should reuse system-
level API specifications that provide access to specific data. API standards for transferring
patients should reuse pre-existing API standards for accessing atomic data, such as atomic FHIR
resources.

API specifications for a specific (type of) client system, such as a FHIR client, should be
harmonized with existing specifications for process APIs.

3.11. | Exchange patterns
APIs can be used to PUSH data from a client to a server or to PULL data from a server by a client.
PUSH and PULL are examples of ‘exchange patterns’. Other examples are the NOTIFY-PULL
pattern (server notifies the client using an API exposed by the client after which the client pulls
data from the server using an API exposed by the server) and the BROADCAST pattern (server
broadcasts data to all clients that are interested in receiving that data).

This specification strives to provide requirements that are applicable to all possible exchange
patterns.

22 API Requirements for Dutch Healthcare Definitions and scope

3.12. | Exchange paradigms
It is common to differentiate between four different paradigms for exchanging data between
systems: operations, messaging, exchanging documents and exposing resources5.

The operations paradigm, or Remote Procedure Call (RPC) paradigm, allows a client to execute
some code on a server by passing it the operation name and required (and optional) arguments.
After processing the code, the server returns some content to the client. The content can be
anything, from a stream of data to a static document (see document paradigm) or a single scalar
value. The SOAP protocol is designed around the operations paradigm.

Messaging is associated with the ‘PUSH’ exchange pattern and facilitates automated
transactions between systems. System A sends a message to System B with a specific intention
and just enough information to justify that intention. Interaction typically occurs without human
interaction: a message invokes a state change (such as a workflow state change or changing
specific data) within a target system. Typical examples in healthcare are HL7v2 messages and
FHIR messages.

Document exchange is of value in healthcare IT. A document is created by an author and
represents a snapshot of available information at a specific time and place: documents are
‘stable’. A document can be (digitally) signed by a human, stating that the document is approved
by its ‘verifier’. A document is first and foremost intended for human consumption (even if it’s
exchanged by electronic means), but it can be processed by automated systems and automated
decisions can be based on its contents, especially if the document has a standardized and
machine-readable (structured) format. Note that the document paradigm can be combined with
the operation, messaging and resource paradigms, because documents can be the result of an
operation, can be transmitted through a message and can be requested from a ‘documents’
resource.

In (Dutch) healthcare, documents have significant value in exchanging data between healthcare
organizations. A document can be used to send data between healthcare organizations in
accordance with the Dutch WGBO regulation: a healthcare professional transmits specific data
(the document) to a specific healthcare provider with a specific purpose (e.g., a transfer or
consultation) in accordance with healthcare quality standards or best practices. In such cases
data can be transmitted without the specific consent of the patient.

As opposed to documents, resources are dynamic. A resource exposes data in response to a
specific request and its content changes over time and is dependent on the specifics of the
request. Resources are often associated with the PULL and NOTIFY PULL exchange patterns,
because a dynamic resource can’t be PUSHED to another system. In healthcare, FHIR resources
are the most popular example of the resource paradigm. Because of their dynamic nature,
exchange of resources across organizations often requires specific consent of the patients
concerned.

This specification covers all four paradigms and sets out requirements for when to use which
paradigm.

23 API Requirements for Dutch Healthcare Definitions and scope

3.12.1. | Consequences for API design and specification
Different paradigms are suitable for different scenarios. API design and specification should
consider that APIs designed using the resource paradigm make the API client responsible for
defining the content of the data exposed by the API. The resource paradigm is very flexible from
the perspective of the consumer (the API client) but consequently, the healthcare organization
responsible for the data has less control over what data is exchanged in what situation.

3.13. | Internal and external API usage
Many policies, like the Dutch API strategy and the NHS Open API policy, distinguish between
internal and external APIs. Indeed, European and Dutch regulations do impose such a distinction
but distinguishing internal from external APIs might not always be easy and has nothing to do
with technology.

Processing personal data is always subject to privacy regulations such as the European GDPR
(General Data Protection Regulation). When data is exchanged between organizations, special
rules apply. These rules depend on the relationship between those organizations, like the
relationship between a (GDPR) ‘data controller’ and ‘data processor’. ‘Internal’ and ‘External’
are not a property of the APIs themselves but indicate different use of (sometimes the same)
APIs. Although different intended uses may affect API design, our approach is to treat internal or
external API design alike as much as possible.

In this specification ‘internal API usage’ is restricted to data exchange within a single data
controller. ‘External API usage’ on the other hand, covers the exchange of data (using APIs)
between data controllers (and their respective data processors). External API usage is subject to
special regulations such as the Dutch Wabvz and the Dutch NEN7512 standard.

This specification covers both internal and external APIs.

3.14. | Unrestricted and restricted API usage
APIs can be used to provide unrestricted access to data and functionality. These kinds of APIs
don’t require authorization to access API functionality and/or data and hence don’t need to
know the identity of the person or organization using the API. APIs that provide unrestricted use
are sometimes referred to as ‘Anonymous APIs’ or as ‘Open Data APIs’.

Especially in healthcare, most APIs expose (sensitive) personal data and hence do require
authorization. These APIs restrict access to data and/or functionality to specific applications,
organizations and/or users. Hence, they need to identify and authenticate API users. This is
called ‘restricted usage’. APIs that provide ‘restricted usage’ are sometimes referred to as
‘identified APIs’.

In real life, even APIs that provide unrestricted use to end-users during operation, do have some
restrictions in place that apply to developers. For many APIs special onboarding procedures are
in place. Only after onboarding are developers provided with a so-called API key that gives them

24 API Requirements for Dutch Healthcare Definitions and scope

(their software) access to the API. This allows the organization that provides the API to prevent
(deliberate or undeliberate) misuse. It also allows for better statistical analysis of API use.

This specification covers both the restricted and unrestricted usage of APIs.

3.15. | Roles involved with the development, exploitation and
 use of APIs
APIs are created by developers and are consumed by software created by (other) developers.
Sometimes the party responsible for creating and maintaining an API is also responsible for
deploying the API. At other times, the development and deployment roles are fulfilled by
different parties. The same is true for API clients. Sometimes systems that consume an API,
so-called API clients, are developed and deployed by one party, sometimes different parties are
responsible for developing and deploying an API client system.

Most of the time, the party responsible for developing an API is also responsible for specifying
the API. In the case of standard APIs, such as the Dutch MedMij APIs, specifications for APIs are
the responsibility of a (National) standards body or ‘API specifier’, in this case Nictiz. Sometimes,
the API specifier is also responsible for verifying API conformance to the specification,
sometimes designated ‘API conformance verifiers’ (such as notified bodies) fulfil such a role.

Because separate roles have different responsibilities throughout the lifecycle of an API, most
API requirements are specific to a role. This specification recognizes nine roles involved with the
creation, deployment and use of APIs. Diagram 1 sets out these nine roles.

user-side
product

operational
level

logical
level

application
level

infrastructure
level

user-side
behaviour

processing
agreement

processing
agreement

exchange
agreement

mediation provider-side
behaviour

provider-side
product

API client
developer

API client
deployer

API user

API specifier

API logical
designer

API
infrastructure

API server
deployer

API
provider

API server
developer

(Diagram 1) Roles involved with specification, creation, deployment and use of APIs

25 API Requirements for Dutch Healthcare Definitions and scope

Each role is briefly introduced in Table 1. Requirements in this specification are assigned to one
or more roles through the ‘applicable roles’ attribute of each requirement.

API role Responsibilities

API client deployer Technical responsibilities for employing an API, as deployed by
the API server deployer, and specified by the API specifier, thus
implementing the final responsibilities of the API user

API client developer Technical responsibilities for supplying software for the API client
deployer

API infrastructure Technical responsibilities for conveying specified APIs between API
clients and API servers

API logical designer Responsibilities for logically specifying both data and the operations
to be implemented in the API

API provider End responsibilities for providing the value and meaning of an API,
as agreed with API users

API server deployer Technical responsibilities for deploying an API, as specified by an
API specifier, thus implementing the end responsibilities of the API
provider

API server developer Technical responsibilities for supplying software for the API server
deployer

API specifier Responsibilities for technically specifying the API so that an API
server deployer knows what to deploy and an API client knows what
to employ

API user End responsibilities for using the value and meaning of an API, as
agreed with the API provider

(Table 1) Roles involved with the specification, creation, deployment and use of APIs

26 API Requirements for Dutch Healthcare Definitions and scope

2. Authorization/access control
 This does not only apply to the technical standards and specifics used to authorize access to

APIs, but also to the semantics of access tokens and requests for access tokens, such as the
permitted values for permissions (oAUth2 scopes) and expiration requirements.

3. Protecting integrity and confidentiality
 This applies to any specifics on protecting integrity and confidentiality at both transport and

message levels, including specifics on the cryptographic algorithms, key distribution and
PKIs used.

4. Addressing
 This applies to specifics on addressing API endpoints and mechanisms used to distribute

(updates to) addresses.

5. Content encoding
 This applies to specifics on content encoding such as the compression algorithms used and

character encoding.

6. Content formatting
 Specifics on content formatting such as the use of MTOM/XOP and BSON but also healthcare-

specific (data) formats.

7. Exchange patterns and exchange paradigms used

8. API signature and semantics
 All actions (methods) that are available through the API MUST be covered, as well as

the legitimate data structures return (error) codes (the API signature), Including a full
specification of all API requests and responses.

9. Use cases
 How to (and how not to) use the API in specific use cases.

10. References to other specifications
 Most specifications reuse other specifications such as RFCs created by IETF or W3C or Dutch

information standards created by Nictiz.

Creating and maintaining the API specification is the responsibility of the API specifier role.

3.16. | The contents of an API specification
An API specification MUST contain enough information for a competent developer to create an
API implementation or an API client without further information. This includes:

1. Identification and authentication of people, organizations, and machines
 This does not only apply to the technical standards and specifics used to authenticate

entities but also to the identifying attributes that are used and how to obtain and secure
them to create a network of trust.

27 API Requirements for Dutch Healthcare Definitions and scope

3.17. | The contents of API documentation
API documentation includes, but is not limited to, the API specification. Other important parts of
API documentation include:
– How to obtain and use test tooling
– API onboarding and access policies
– Usage restrictions and guidelines
– Service level agreements
– Technical specifics for a particular deployment, such as the use of private networks instead

of public internet
– Addresses of API endpoints

These parts of API documentation are the responsibility of the API server deployer. In many
cases, the API server deployer works together with the API server developer or refers to
documentation the API server developer supplies.

3.18. | API levels of standardization
Almost all APIs are based on standards such as communication standards (like the HTTP
standard) and formatting standards such as XML. Nevertheless, many APIs use different
communication technologies, different documentation formats and testing tools, different
methods for discoverability, different data formats, unique styles and patterns and different
‘content’, for what seems to be similar functionality and purpose. These differences complicate
the use of APIs.

This specification provides requirements for APIs with various levels of standardization. Even at
the lowest level of standardization, the ‘Open API level’, requirements are set out that harmonize
API design, development, deployment, and usage. At the middle level, the ‘Technically
standardized level’, requirements aim at achieving technical harmonization while at the highest
level, the ‘Fully standardized level’, requirements aim at achieving software interoperability.

Requirements in this specification are assigned to one or more levels of standardization through
the ‘applicable levels’ attribute of each requirement. Valid values for this attribute are ‘OA’ (Open
API), ‘TSA’ (Technically Standardized) and ‘FSA’ (Fully Standardized).

3.18.1. | ‘Open API’ standardization level
The NHS uses the following definition of ‘Open APIs’6:

‘Open APIs are those APIs that have been exposed to enable other systems to interact with that
system, and those APIs have been sufficiently documented so that the available functionality is
discoverable, fit for purpose and re-usable.’

This specification embraces the NHS definition of ‘Open APIs’. It is important to disambiguate
from the OpenAPI initiative (formerly Swagger) that standardizes how APIs are described.

6| https://www.england.nhs.uk/wp-content/uploads/2018/09/

open-api-policy.pdf

https://www.england.nhs.uk/wp-content/uploads/2018/09/open-api-policy.pdf
https://www.england.nhs.uk/wp-content/uploads/2018/09/open-api-policy.pdf

28 API Requirements for Dutch Healthcare Definitions and scope

At the ‘Open API’ level, the only technical requirements are that:

– APIs are based on the HTTP communication protocol (see API protocols and styles).
– APIs use common and state-of-the-art technologies and standards.
– APIs comply to common security and privacy guidelines and regulations

Other than that, API developers are free to use the technology of their choice and are free to
create APIs using their own data formats and ‘content’. Even the purpose of these ‘Open APIs’ is
defined by the organization creating them.

Requirements at this level aim to increase reusability, discoverability and quality, without
restricting APIs to specific technical and/or semantical standards. This preserves agility and
increases the speed at which APIs become available to API users and innovators, while at the
same time providing some level of harmonization and transparency. Typical requirements at this
level concern (transparency of) documentation, testability and onboarding procedures.

3.18.2. ‘Technically standardized API’ standardization level
Requirements at this level aim to increase the technical harmonization of APIs. Examples
of requirements at this level are design rules, requirements for versioning and lifecycle
management, security requirements, formatting requirements and transport requirements.

Many of these requirements reflect a technical choice, such as using JSON, BSON or XML. Other
examples include the compression methods that are allowed (such as GZIP and DEFLATE or the
less common LZ4), what security models and standards are allowed (such as oAuth2 and WS-
security) and what cryptographic methods are allowed for assuring confidentiality and integrity.

In Dutch Healthcare, no single party has the authority to enforce these kinds of choices and
many technical choices and standards coexist. This specification aims to harmonize technical
choices by referring to specific (inter)nationally recognized standards, guidelines and best
practices. Sources for these references may include, but are not limited to:

– W3C standards
– Internet Engineering TaskForce (IETF) RFCs
– OASIS standards
– International health-IT standardization efforts and standards such as HL7 and IHE
– The Dutch National Cyber Security Centre (NCSC) security guidelines
– Dutch NEN norms
– Dutch ‘afsprakenstelsels’ such as MedMij
– Technical agreements between health-IT industry partners such as made by the Dutch

Taskforce Samen Vooruit (TSV, now part of NLDigital) and the NUTS foundation

For an API to comply with the requirements at this level it MUST also comply with the
requirements at the ‘Open API’ standardization level.

29 API Requirements for Dutch Healthcare Definitions and scope

3.18.3. | ‘Fully standardized API’ standardization level
Requirements at this level aim to increase software interoperability by setting requirements for
standardizing all parts of APIs.

In Dutch Healthcare, no single party is designated to approve API standards. However, many
national and international organizations are concerned with developing API specifications and
testing their implementations. Examples of such organizations include, but are not limited
to, the Royal Netherlands Standardization Institute ‘NEN’, the Dutch MedMij foundation, the
international HL7, IHE and openEHR foundations and the Dutch NUTS community.

An API is fully standardized when:

– Its complete specification is approved as a standard by a standardization organization
– Its implementation is verified by that organization during a formal test or qualification

process.

Because different standardization organizations can create different standards for the same
purpose and use case, ‘fully standardized’ does not equal ‘the only allowed way of doing things’.
However, all members of the standardization organization approve the API specification and
promote its implementation in real life systems. The Dutch API library for healthcare will include
‘competing’ fully standardized APIs from different standardization organizations, as long as:

– They fulfil the requirements for fully standardized APIs
– Their organizations are supported by a substantial number of Health IT stakeholders, such as

Health IT vendors and/or healthcare providers
– Their organizations provide a formal test- or qualification process for API implementations,

such as the IHE connectathon and the Nictiz MedMij qualification tests.

In exceptional cases, the Dutch government can force the use of specific standards, such as API
standards. The upcoming Wegiz legislation provides the Dutch government with the means to
force the use of specific standards for information exchange, including the use of specific fully
standardized APIs. Other means to promote the use of specific fully standardized APIs above
others are enforcing their use through common purchasing conditions.

For an API to comply with the requirements at this level it MUST also comply with the
requirements at the ‘Open API’ and ‘Technically standardized’ standardization levels.

3.19. | API requirement categories
All requirements in this specification fall under a specific category. This specification recognizes
nine requirement categories:

– API specification & documentation
– API security
– API lifecycle management & versioning
– API Design Rules
– API testability
– API onboarding
– API agreements
– API discoverability
– Health Information Standards compliance

Some categories contain requirements on a particular level of standardisation (such as the ‘Open
API standardization level’), others contain requirements on two or even all standardization
levels.

Level

API
specification &
documentation API security

API Lifecycle
management
& versioning

API
design rules API testability

API
agreements

API
discoverability

Health
Information
Standards
compliance

Fully
standardised

Technically
standardised

Open

(Table 2) Levels of standardization and requirement categories. Blue cells indicate the
availability of requirements for a particular level and category combination

API specification
& documentation

4

31 API Requirements for Dutch Healthcare

32 API Requirements for Dutch Healthcare API specification & documentation

Code Requirement Applicable role(s) Standardization levels

SD001 API documentation MUST be publicly
and freely available

API specifier OA, TSA, FSA

SD002 API documentation MUST provide
examples of how to use the API

API specifier OA, TSA, FSA

SD003 API documentation SHOULD provide
examples of input and output data

API specifier OA, TSA, FSA

SD004 API documentation SHOULD include a
FAQ page for API client developers

API specifier OA, TSA, FSA

SD005 API documentation MAY specify cases
in which API usage is not applicable

API specifier OA, TSA, FSA

SD006 API server developers and/or
deployers MAY be active on developer
forums to assist API client developers
and deployers with the correct usage
of APIs

API server
developer, API
server deployer

OA, TSA, FSA

SD007 API server developers MAY provide API
client developers with an SDK for easy
access to deployed APIs

API server
developer

OA, TSA, FSA

SD008 API specifications SHOULD be
machine-readable and allow for
automated code generation

API server
developer

OA, TSA, FSA

SD009 API documentation MUST be
published in English

API specifier OA, TSA, FSA

SD010 Documentation MUST provide
(references to) evidence to back any
compliance claims made

API specifier OA, TSA, FSA

SD011 Content relationship MUST be
described in API documentation

API specifier TSA, FSA

SD012 API documentation MUST describe the
availability and usage of operations

API specifier TSA, FSA

SD013 API versioning policy MUST be
documented

API specifier TSA, FSA

SD014 API specifications MUST cover the
rationale behind the exchange
paradigms used by the API

API specifier FSA

33 API Requirements for Dutch Healthcare API specification & documentation

4.1. | API documentation MUST be publicly and freely available

Requirement code: SD001
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

Each API MUST be documented to the extent that a competent developer has sufficient
information to make use of the API without further information. The specification MUST
therefore at least cover the elements that are addressed in paragraph 3.13 (The contents of an
API specification), or it MUST refer to other specifications that cover these elements.

The documentation MUST be freely available and accessible via a public website. As an exception
to this requirement, documentation MAY refer to paid content published by standardization
organizations. Free registration to access the API documentation is accepted.

API documentation MAY be copyright protected and further distribution without explicit
permission (of the API specifier) MAY be restricted.

4.2. | API documentation MUST provide examples of how to use
 the API

Requirement code: SD002
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

API documentation MUST include examples for the most common use cases. The documentation
MUST clearly express the value of the API (for API client developers and API users) within the
context of these use cases.

When a use case involves integration of two or more APIs, the documentation MUST provide
examples of how to use these APIs in collaboration.

4.3. | API documentation SHOULD provide examples of input
 and output data

Requirement code: SD003
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

Documentation for all API methods SHOULD contain examples of input and output data, using a
supported data format such as JSON or XML.

When the API server developer includes an SDK for easy access to the API, code samples MUST be
provided for using the API through the SDK.

4.4. | API documentation SHOULD include a FAQ page for API
 client developers

Requirement code: SD004
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

A FAQ SHOULD be made available for developers that want to use the API(s). The FAQ SHOULD
be written in an actual question-and-answer format. Questions and answers SHOULD be written
from the point of view of the API client developer. Questions SHOULD include the most common
problems and misconceptions that API client developers run into when using the API.

4.5. | API documentation MAY specify cases in which API usage
 is not applicable

Requirement code: SD005
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

Documentation MAY include cases in which API usage is not applicable or not supported. In this
case documentation MUST clearly state whether using the API in this way violates the API license
agreement.

4.6. | API server developers and deployers MAY be active on
 developer forums to assist API client developers and
 deployers with the correct usage of APIs

Requirement code: SD006
Applicable roles: API server developer, API deployer
Standardization levels: OA, TSA, FSA

Using developer forums, experts can provide resolutions to common hiccups and increase
participation and interest for API client developers.

Server developers and deployers MAY be (are encouraged to be) active participants on relevant
developer forums. Solutions to problems provided through a developer forum MAY be provided
without prejudice.

API documentation MAY refer to developer forums for knowledge sharing and assistance.

API server developers and deployers MAY provide their own developer forum.

34 API Requirements for Dutch Healthcare API specification & documentation

4.7. | API server developers MAY provide API client developers an
 SDK for easy access to deployed APIs

Requirement code: SD007
Applicable roles: API server developer
Standardization levels: OA, TSA, FSA

If an SDK is provided, it MUST be documented to the extent that a competent developer has
sufficient information to make use of the SDK without further information.

Charges for using the SDK are accepted.

If an SDK is provided, API client developers MUST NOT in any way be forced to use it.

Any common coding language and/or development platform is accepted.

4.8. | API specifications SHOULD be machine readable and allow
 for automated code generation

Requirement code: SD008
Applicable roles: API server developer
Standardization levels: OA, TSA, FSA

Using machine-readable API specification allows for automated code generation and hence
saves time and avoids errors when writing API client code.

API server developers SHOULD provide machine-readable API specifications based on
international standards such as OpenAPI (formerly known as Swagger) and/or FHIR
StructureDefinitions/OperationDefinitions.

4.9. | API documentation MUST be published in English

Requirement code: SD009
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

API documentation MUST be available in English.
Typical Dutch terminology and names of people and organizations MUST be written down in
their original Dutch form. Domain concepts MUST be translated to their corresponding official
English terms instead of using literal (word-for-word) translations.

35 API Requirements for Dutch Healthcare API specification & documentation

4.10. | Documentation MUST provide (references to) evidence to
 back up any compliance claims made

Requirement code: SD010
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

When documentation claims compliance to standards, specifications, guidelines and practices,
policies or law, evidence to back up these claims MUST be provided.

Examples of evidence include official compliance certificates and statements (such as IHE
integration statements and Nictiz qualifications) and independent auditor reports (such as
security audit reports).

4.11. | Content relationship MUST be described in API
 documentation

Requirement code: SD011
Applicable roles: API specifier
Standardization levels: TSA, FSA

Some content cannot exist without its parent content. The API documentation must describe in
which way the relationship is managed and used.

4.12. | API documentation MUST describe the availability and
 usage of operations

Requirement code: SD012
Applicable roles: API specifier
Standardization levels: TSA, FSA

API operations can be extremely useful in specific use cases, describing the operations will make
them even more useful.

36 API Requirements for Dutch Healthcare API specification & documentation

4.13. | API versioning policy MUST be documented

Requirement code: SD013
Applicable roles: API specifier
Standardization levels: TSA, FSA

The versioning of APIs and its policy must be documented in a clear manner. Use of versioning
makes developing and debugging by API client developers easier.

4.14. | API specifications MUST cover the rationale behind the
 exchange paradigm used by the API

Requirement code: SD014
Applicable roles: API specifier
Standardization levels: FSA

An API specifier MUST describe the rationale behind the exchange paradigm used by the API,
such as described in paragraph 3.12.

37 API Requirements for Dutch Healthcare API specification & documentation

API
testability
5

38 API Requirements for Dutch Healthcare

5.1. | Public test tooling MUST be freely available for test purposes

Requirement code: TS001
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

An API server deployer MUST provide test tooling which allows API client developers and API
client deployers to test their solutions without affecting production environments. This test
tooling MAY be supplied and maintained by API server developers.

Test tooling and data exposed by test tooling MUST mimic real API usage. Both online and offline
tools are accepted. For online test tooling, the API server deployer MUST specify what are the
Service Level Agreements for the availability and response times of the test tooling.

Test tooling MUST NOT expose confidential data, including but not limited to, patient data.

The test tooling MUST be freely available and accessible via a public website. Free registration to
access the test tooling is accepted.

The test tooling MAY be subject to specific onboarding procedures and policies if these policies
comply with onboarding requirements in this specification.

39 API Requirements for Dutch Healthcare API testability

Code Requirement Applicable roles Standardization levels

TS001 Public test tooling MUST be freely
available for test purposes

API deployer OA, TSA, FSA

API
discoverability

6

40 API Requirements for Dutch Healthcare

6.1. | API specifications SHOULD be published in the Dutch API
 library for healthcare

Requirement code: DI001
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

API specifications SHOULD be published in the Dutch API library for healthcare. For each version
of the published API specification, the API specifier MUST specify the status of that version (trial
implementation, production, deprecated, retired).

When publishing (a version of) an API specification, the API specifier MUST provide (a link to) all
specification, documentation and qualification documents available.

API specifications that are published in the Dutch API library for healthcare MUST at least comply
with all requirements for Open APIs (Open API standardization level) that apply to the API
specifier role.

6.2. | API implementations SHOULD be published in the Dutch
 API library for healthcare

Requirement code: DI002
Applicable roles: API server developer
Standardization levels: OA, TSA, FSA

API implementations SHOULD be published in the Dutch API library for healthcare. For each
version of the published API implementation, the API server developer MUST specify the status
of that version (trial implementation, production, deprecated, retired).

41 API Requirements for Dutch Healthcare API discoverability

Code Requirement Applicable roles Standardization levels

DI001 API specifications SHOULD be
published in the Dutch API library for
healthcare

API specifier OA, TSA, FSA

D002 API implementations SHOULD be
published in the Dutch API library for
healthcare

API server
developer

OA, TSA, FSA

DI003 API deployments SHOULD be
published in the Dutch API library for
healthcare

API server
deployer

OA, TSA, FSA

When publishing (a version of) an API implementation, the API server developer MUST provide
the name and version of the system that contains the API implementation.

API implementations that are published in the Dutch API library for healthcare MUST refer to (one
or more versions of) an API specification that is published in the Dutch API library for healthcare.

API implementations that are published in the Dutch API library for healthcare MUST at least
comply with all requirements for Open APIs (OA standardization level) that apply to the API
server developer role.

6.3. | API deployments SHOULD be published in the Dutch API
 library for healthcare

Requirement code: DI003
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

API deployments SHOULD be published in the Dutch API library for healthcare. For each version
of the published API deployment, the API server deployer MUST specify the status of that version
(trial implementation, production, deprecated, retired).

When publishing (a version of) an API deployment, the API server deployer MUST provide (a link
to) all information considering agreements and conditions for using the API, onboarding and
testing procedures and endpoint information.

API deployments that are published in the Dutch API library for healthcare MUST refer to an API
implementation that is published in the Dutch API library for healthcare.

API deployments that are published in the Dutch API library for healthcare MUST at least comply
with all requirements for Open APIs (Open API standardization level) that apply to the API server
deployer role.

42 API Requirements for Dutch Healthcare API discoverability

API
onboarding
7

43 API Requirements for Dutch Healthcare

7.1. | All API onboarding policies, criteria and procedures MUST
 be documented

Requirement code: OB001
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

API documentation MUST include details of the onboarding process, including criteria and
policies for onboarding approval and disapproval.

When the onboarding process requires a review of the client software and/or API client developer
organization, the documentation MUST include details on the review process.

44 API Requirements for Dutch Healthcare API onboarding

Code Requirement Applicable roles Standardization levels

OB001 All API onboarding policies, criteria
and procedures MUST be documented

API deployer OA, TSA, FSA

OB002 API onboarding SHOULD be an online
self-service process

API deployer OA, TSA, FSA

OB003 API onboarding MAY require a review
of the client system and API client
developer organization

API deployer OA, TSA, FSA

OB004 A privacy statement MUST be provided
whenever API onboarding requires the
API client developer to provide
information on the client system and/
or client developer organization

API deployer OA, TSA, FSA

OB005 An API offboarding procedure MUST
be provided

API deployer OA, TSA, FSA

OB006 All API offboarding policies, criteria
and procedures MUST be documented

API deployer OA, TSA, FSA

7.2. | API onboarding SHOULD be an online self-service process

Requirement code: OB002
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

To speed up the onboarding process, API onboarding SHOULD be an online self-service process.

An online service SHOULD be used to submit all the information required to onboard the API
client developer and/or client system.

7.3. | API onboarding MAY require a review of the client system
 and API client developer organization

Requirement code: OB003
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

The API onboarding process MAY include a review of the client system and of the organizations
that develop and/or deploy the API client.

An API server deployer MAY require an external review of the API client software, such as a
security review, as part of the API onboarding procedure.

An API server deployer MAY require external certification of the Quality Management System
(QMS) and/or Information Security Management System (ISMS) used by organizations that
develop and/or deploy the API client as part of the API onboarding procedure.

7.4. | An Information Disclosure Statement MUST be provided
 whenever API-onboarding requires the API client developer
 to provide information on the client system and/or client
 developer organization

Requirement code: OB004
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

When an API server deployer requires an organization to submit information as part of the
onboarding process, the API server deployer MUST provide an Information Disclosure Statement.

The Information Disclosure Statement MUST explicitly state what information is considered

45 API Requirements for Dutch Healthcare API onboarding

confidential and what information is NOT considered confidential.

The Information Disclosure Statement MUST explicitly state what information is permanently
destroyed, and what information is not, after offboarding.

The Information Disclosure Statement MUST explicitly state to which other parties information is
supplied and for what purpose.

The Information Disclosure Statement MUST explicitly state any restrictions on the time period
that the statement is considered in effect.

7.5. | An API offboarding procedure MUST be provided

Requirement code: OB005
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

The API server deployer MUST provide a procedure for offboarding an API client and/or
organization responsible for developing and/or deploying an API client.

After offboarding, the API server deployer MUST remove any public (published) statements that
indicate active onboarding by the API client and/or API client organization.

The API server deployer MAY store information that was previously submitted as part of the API
onboarding process for an unlimited period of time, even after API offboarding.

7.6. | All API offboarding policies, criteria and procedures MUST
 be documented

Requirement code: OB006
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

API documentation MUST include details of the offboarding process, including criteria and
policies for offboarding, initiated by the API server deployer.

46 API Requirements for Dutch Healthcare API onboarding

API Lifecycle
management
and
versioning
8

47 API Requirements for Dutch Healthcare

8.1. | API specifications MUST be marked deprecated when they
 are no longer recommended for use

Requirement code: LM001
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

An API specifier MUST mark an API specification as deprecated (in the Dutch API library for
healthcare) when it is no longer recommended for use. Specifications marked as deprecated are
still supported but support may end soon.

An API specifier MUST mark an API specification as deprecated for a period of at least one year,
before it MAY be marked retired.

48 API Requirements for Dutch Healthcare API Lifecycle management and versioning

Code Requirement Applicable roles Standardization levels

LM001 API specifications MUST be marked
deprecated when they are no longer
recommended for use

API specifier OA, TSA, FSA

LM002 API specifications MUST be marked
retired when they are no longer
supported

API specifier OA, TSA, FSA

LM003 API implementations MUST be marked
deprecated when they are no longer
recommended for use

API server
developer

OA, TSA, FSA

LM004 API implementations MUST be marked
retired when they are no longer
supported

API server
developer

OA, TSA, FSA

LM005 API deployments MUST be marked
deprecated when they are no longer
recommended for use

API server
deployer

OA, TSA, FSA

LM006 API deployments MUST be marked
retired when they are no longer
supported

API server
deployer

OA, TSA, FSA

LM007 An API client MUST be designed to
handle non-breaking changes

API client
developer

OA, TSA, FSA

LM008 An API specification MUST comply
with Semantic Versioning 2.0.0

API specifier OA, TSA, FSA

49 API Requirements for Dutch Healthcare API Lifecycle management and versioning

API server developers SHOULD replace the use of deprecated API specifications with newer
versions or alternative API specifications.

API server developers MUST mark API implementations as deprecated (in the Dutch API library
for healthcare) when they are based on a deprecated API specification.

8.2. | API specifications MUST be marked retired when they are
 no longer supported

Requirement code: LM002
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

An API specifier MUST mark an API specification as retired (in the Dutch API library for
healthcare) when it is no longer supported.

API server developers MUST replace the use of retired API specifications with newer versions or
alternative API specifications.

API server developers MUST mark API implementations as retired when they are based on a
retired API specification.

8.3. | API implementations MUST be marked deprecated when
 they are no longer recommended for use

Requirement code: LM003
Applicable roles: API server developer
Standardization levels: OA, TSA, FSA

An API server developer MUST mark an API implementation as deprecated (in the Dutch API
library for healthcare) when it is no longer recommended for use. Implementations marked as
deprecated are still supported but support may end soon.

An API server developer MUST mark an API implementation as deprecated for a period of at least
one year, before it MAY be marked retired.

API server deployers SHOULD replace deprecated API implementations with newer versions or
alternative API implementations.

API server deployers MUST mark an API deployment as deprecated (in the Dutch API library for
healthcare) when it is based on a deprecated implementation.

50 API Requirements for Dutch Healthcare API Lifecycle management and versioning

8.4. | API implementations MUST be marked retired when they
 are no longer supported

Requirement code: LM004
Applicable roles: API server developer
Standardization levels: OA, TSA, FSA

An API server developer MUST mark an API implementation as retired (in the Dutch API library for
healthcare) when it is no longer supported.

API server deployers MUST replace the use of retired API implementations with newer versions or
alternative API implementations.

API server deployers MUST mark API deployments as retired (in the Dutch API library for
healthcare) when they are based on a retired API implementation.

8.5. | API deployments MUST be marked deprecated when they
 are no longer recommended for use

Requirement code: LM005
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

An API server deployer MUST mark an API deployment as deprecated (in the Dutch API library for
healthcare) when it is no longer recommended for use. Deployments marked as deprecated are
still supported but support may end soon.

An API server deployer MUST mark an API deployment as deprecated for a period of at least one
year, before it MAY be marked retired.

API client developers SHOULD replace the use of deprecated API employments with newer
versions or alternative API implementations.

8.6. | API deployments MUST be marked retired when they are
 no longer supported

Requirement code: LM006
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

An API server deployer MUST mark an API deployment as retired (in the Dutch API library for
healthcare) when it is no longer supported.

API client developers MUST replace the use of retired API deployments with newer versions or
alternative API deployments.

8.7. | An API client MUST be designed to handle non-breaking
 changes

Requirement code: LM007
Applicable roles: API client deployer
Standardization levels: OA, TSA, FSA

An API client MUST be designed to handle non-breaking changes. This includes at least the non-
breaking changes described in paragraph 3.7.3.

8.8. | An API specification MUST comply with Semantic
 Versioning 2.0.0

Requirement code: LM008
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

An API specification MUST comply with Semantic Versioning specification (SemVer) version 2.0.0.

51 API Requirements for Dutch Healthcare API Lifecycle management and versioning

API
agreements
9

52 API Requirements for Dutch Healthcare

53 API Requirements for Dutch Healthcare API agreements

Code Requirement Applicable roles Standardization levels

AG001 API Service Levels MUST be openly
and freely available

API server
deployer

OA, TSA, FSA

AG002 API Access Restriction Policies MUST
be openly and freely available

API server
deployer

OA, TSA, FSA

AG003 Data Processing Policies MUST be
openly and freely available

API server
deployer

OA, TSA, FSA

AG004 Commercial agreements relating to
the use of APIs by API client
developers and API client deployers
MUST be fair and transparent

API server
deployer

OA, TSA, FSA

9.1. | API Service Levels MUST be openly and freely available

Requirement code: AG001
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA
Intention: Protect API client developers, API users and API client deployers from unpredictable
service level quality

API Service Levels MUST be openly and freely available.

API Service levels MUST be documented in the form of an agreement between API server
deployer, API client developer and/or API client deployer. The API server deployer MAY require
API client developers and/or API client deployers to sign a Service Level Agreement before using
the API.

Service Levels MAY be provided on a best-efforts basis. If service levels are provided on a best-
efforts basis, the SLA documentation MUST explicitly state relevant terms such as no liability for
costs or charges incurred in the event of unavailability of the API.

Service Levels MAY be provided in tiers, such as free tiers without developer support and paid
tiers that include developer support.

API Service Levels MUST be documented to the extent that API client developers and API client
deployers are fully informed about the duties and responsibilities of each party involved and
about the remedies or penalties for breaching these duties and responsibilities.

The API Service Levels MUST at least include a description of the service(s) provided and at least
the following metrics by which the service is measured:

– Availability requirements, such as days and times the API is available and any restrictions for
special days

– Details on planned outage and unplanned outage, expressed as a maximum percentage of
total availability times

– Response time expectations, such as a percentage of calls that return within a given amount
of time

– Details on technical support and support windows such as developer support or other
technical support.

The API Service Levels MUST describe any restrictions on using the API. At least the following
MUST be provided:

– Usage restrictions, such as number of calls per time unit or maximum call size and
consequences for exceeding these restrictions

– Any terms and conditions regarding the use of the data acquired via the API, including
requirements and responsibilities for secure and lawful use of data returned by the API such
as retention and destruction policies.

– Any restrictions on what persons or organizations are allowed to access the API (API access
restriction policies)

If the API server deployer provides online test tooling, Service Levels for test tooling MUST be
described using the same metrics for availability, outage, usage restrictions, response times
and technical support. If the API Server deployer provides offline test tooling, only details on
technical support MUST be provided for the offline test tool.

The API Service Level Agreement MUST detail the process and restrictions for changing the
agreement and/or service levels.

9.2. | API Access Restriction Policies MUST be openly and freely
 available

Requirement code: AG002
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA
Intention: Prevent information blocking strategies based on arbitrary access to APIs

Any restrictions on persons or organizations to access and/or use the API MUST be transparent
and documented.

54 API Requirements for Dutch Healthcare API agreements

The API server deployer MUST NOT restrict persons or organizations from using the API for
reasons other than the documented access restriction policies.

Access Restriction Policies MAY include an accreditation process and review of the API client
system, API client developer organization and/or API client deployer organization. If an
accreditation process is in place, details on how accreditation is achieved MUST be provided,
including criteria for exclusion.

9.3. | Data Processing Policies MUST be openly and freely available

Requirement code: AG003
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA
Intention: Protect API user, API client developer and API client deployer organizations from
unwanted use of API usage data

API Server Deployer Data processing policies MUST be documented and MUST include at least the
details on how API usage will be monitored and what data will be stored as part of the monitoring
process, such as IP addresses of the API deployer or API user.

This requirement concerns monitoring data that is not personal data. Requirements for the
processing of personal data is the concern of the European General Data Protection Regulation
(GDPR) and therefore is not part of this specification. However, API server deployers MAY
document details on processing personal data as part of this requirement.

9.4. | Commercial charges relating to the use of APIs by API
 client developers and API client deployers MUST be
 predictable and openly and freely available

Requirement code: AG004
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA
Intention: Prevent information blocking strategies based on non-transparent pricing

When an API server deployer charges API client developers and/or API client deployers for using
the API in a production environment, any fees MUST be openly and freely available.

Fees MUST be predictable, meaning that the API client developer and the API client deployer have
enough pricing information to predict the cost of API usage for at least two years after signing the
agreement.

55 API Requirements for Dutch Healthcare API agreements

API design
rules
10

56 API Requirements for Dutch Healthcare

Design rules focus on the technical implementation of the APIs.

10.1. | Compliance with national API design rules
The Dutch national API strategy by Geonovum7 contains design rules8 that were considered when
writing this chapter. Unfortunately, these rules would exclude the use of FHIR, which is the most
considered base for any RESTful transaction in healthcare. It also focuses on the use of RESTful
interfaces, while SOAP is still used for APIs as well, especially with IHE-profiles, like XDS, XCA, etc.

10.2. | Generic

57 API Requirements for Dutch Healthcare API design rules

7| https://docs.geostandaarden.nl/api/API-Strategie/

8| https://publicatie.centrumvoorstandaarden.nl/api/adr/

Code Requirement Applicable roles Standardization levels

DR001 Interfaces MUST be defined in English API specifier TSA, FSA

DR002 Developers MUST only apply standard
HTTP methods

API specifier TSA, FSA

DR003 Developers MUST adhere to HTTP
safety and idempotency semantics for
operations

API specifier TSA, FSA

DR004 Server communication MUST remain
stateless

API server
developer

TSA, FSA

DR005 Content relationships MUST be
predictably documented

API specifier TSA, FSA

DR006 Operations MUST be predictably
documented

API specifier TSA, FSA

DR007 API version MUST be accessible API specifier TSA, FSA

DR008 APIs MUST at least support the
DEFLATE and gzip compression
algorithms

API specifier TSA, FSA

DR009 APIs MUST use the HTTP accept-
encoding header for negotiating
compression

API client
developer

TSA, FSA

DR010 APIs MUST use the HTTP content-
encoding header for negotiating
compression

API server
developer

TSA, FSA

DR011 JSON formatted content SHOULD
comply to RFC8259 or its successor

API server
developer

TSA, FSA

https://docs.geostandaarden.nl/api/API-Strategie/
https://publicatie.centrumvoorstandaarden.nl/api/adr/

58 API Requirements for Dutch Healthcare API design rules

DR012 APIs SHOULD be based on the NOTIFY-
PULL exchange pattern rather than
the PUSH exchange pattern

API specifier TSA, FSA

DR013 System APIs SHOULD be designed
independent from specific use cases
and types of client systems or user

API specifier FSA, TSA

DR014 Process APIs SHOULD be designed to
reuse System APIs

API specifier FSA, TSA

DR015 Experience APIs SHOULD be based on
Process APIs

API specifier FSA, TSA

DR016 System APIs SHOULD be based on the
operations, messaging, or resource
paradigm rather than the document
paradigm

API specifier FSA, TSA

10.2.1. | Interfaces MUST be defined in English

Requirement code: DR001
Applicable roles: API specifier
Standardization levels: TSA, FSA
Dutch National API strategy:

Healthcare APIs are used internationally, which is why a lot are already available in English.
Conforming to this will help with uniformity and attract non-Dutch developers.

10.2.2. | Developers MUST only apply standard HTTP methods

Requirement code: DR002
Applicable roles: API server developer
Standardization levels: TSA, FSA
Dutch National API strategy: API-03

The HTTP specification (rfc72319) and the later introduced PATCH method specification (rfc578910)
offer a set of standard methods, where every method is designed with explicit semantics.
Adhering to the HTTP specification is crucial since HTTP clients and middleware applications rely
on standardized characteristics. Therefore, resources must be retrieved or manipulated using
standard HTTP methods.

9| https://datatracker.ietf.org/doc/html/rfc7231

10| https://datatracker.ietf.org/doc/html/rfc5789

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc5789

59 API Requirements for Dutch Healthcare API design rules

Method Operation Description

GET Read Retrieve a resource representation for the given URI. Data
is only retrieved and never modified.

POST Create Create a resource. The receiver generates a new URI.

PUT Create/update Create a resource with the given URI or replace (full update)
a resource when the resource already exists.

PATCH Update Partially updates an existing resource. The request only
contains the resource modifications instead of the full
resource representation.

DELETE Delete Remove a resource with the given URI.

Request Description

GET /Patient Retrieves a list of patients.

GET /Patient/12 Retrieves an individual patient.

POST /Patient Creates a new patient.

PUT /Patient/12 Modifies Patient #12 completely.

PATCH /Patient/12 Modifies Patient #12 partially.

DELETE /Patient/12 Deletes Patient #12.

The following table shows some examples of the use of standard HTTP methods:

HTTP also defines other methods, e.g., HEAD, OPTIONS and TRACE. For this design rule, these
operations are left out of scope.

10.2.3. | Developers MUST adhere to HTTP safety and idempotency semantics for
operations

Requirement code: DR003
Applicable roles: API server developer
Standardization levels: TSA, FSA
Dutch National API strategy: API-01

DR006: Adhere to HTTP safety and idempotency semantics for operations

60 API Requirements for Dutch Healthcare API design rules

The HTTP protocol (rfc723111) specifies whether an HTTP method should be considered safe
and/or idempotent. These characteristics are important for clients and middleware applications
because they should be considered when implementing caching and fault tolerance strategies.

Request methods are considered safe if their defined semantics are essentially read-only, i.e.,
the client does not request, and does not expect, any state change on the origin server because
of applying a safe method to a target resource. A request method is considered idempotent if the
intended effect on the server of multiple identical requests with that method is the same as the
effect for a single such request.

The following table describes which HTTP methods must behave as safe and/or idempotent:

11| https://datatracker.ietf.org/doc/html/rfc7231

Method Safe Idempotent

GET Yes Yes

HEAD Yes Yes

OPTIONS Yes Yes

POST No No

PUT No Yes

PATCH No No

DELETE No Yes

10.2.4. | Server communication MUST remain stateless

Requirement code: DR004
Applicable roles: API server developer
Standardization levels: TSA, FSA
Dutch National API strategy:

One of the key constraints of the REST architectural style is stateless communication between
client and server. It means that every request from client to server must contain all the
information necessary to understand the request. The server cannot take advantage of any
stored session context on the server as it didn’t memorize previous requests. Session state must
therefore reside entirely on the client.

https://datatracker.ietf.org/doc/html/rfc7231

61 API Requirements for Dutch Healthcare API design rules

To properly understand this constraint, it’s important to make a distinction between two distinct
kinds of state:

– Session state: information about the interactions of an end-user with a particular client
application within the same user session, such as the last page being viewed, the login state
or form data in a multi-step registration process. Session state must reside entirely on the
client (e.g., in the user’s browser).

– Resource state: information that is permanently stored on the server beyond the scope of
a single user session, such as the user’s profile, a product purchase or information about a
building. Resource state is persisted on the server and must be exchanged between client
and server (in both directions) using representations as part of the request or response
payload. This is where the term REpresentational State Transfer (REST) originates from.

It’s a misconception that there should be no state at all. The stateless communication
constraint should be seen from the server’s point of view and states that the server should
not be aware of any session state.

The client of a REST API could be a variety of applications such as a browser application, a
mobile or desktop application or even another server serving as a backend component for
another client. REST APIs should therefore be completely client agnostic.

Stateless communication offers many advantages, including:
– Simplicity is increased because the server doesn’t have to memorize or retrieve the session

state while processing requests
– Scalability is improved because not having to incorporate the session state across multiple

requests enables higher concurrency and performance
– Observability is improved since every request can be monitored or analysed in isolation

without having to incorporate session context from other requests
– Reliability is improved because it simplifies the task of recovering from partial failures since

the server doesn’t have to maintain, update or communicate the session state. One failing
request does not influence other requests (depending on the nature of the failure of course).

In the context of REST APIs, the server must not maintain or require any notion of the
functionality of the client application and the corresponding end-user interactions. To achieve
full decoupling between client and server, and to benefit from the advantages mentioned above,
no session state must reside on the server. Session state must therefore reside entirely on the
client.

62 API Requirements for Dutch Healthcare API design rules

10.2.5. | Content relationship MUST be predictably implemented

Requirement code: DR005
Applicable roles: API server developer
Standardization levels: OA, TSA, FSA

When using several content relationships within an API, adding more relationships must adhere
to the same implementation choices.

E.g., if a child resource is already available through stacking of endpoint, another child resource
must be made available in the same manner.

10.2.6. | Operations MUST be predictably implemented

Requirement code: DR006
Applicable roles: API server developer
Standardization levels: OA, TSA, FSA

An API can be made more accessible using operations. The operations in one API must all be
implemented in the same way.

E.g., if an operation is called with a prefix, the same prefix must be used for every other operation
on the same API.

10.2.7. | API version MUST be accessible

Requirement code: DR007
Applicable roles: API server developer
Standardization levels: OA, TSA, FSA

The version of an API can be useful in development and debugging, for this reason the API version
must be accessible through the API.

This can be done in several ways, some examples (but not limited to these) are:

– In the URL-path (e.g., /v1/api/...)
– In a HTTP header (e.g., in Accept (request) and Content-Type (response))
– Available through a separate request (e.g., in response to /api/version)

10.2.8. | APIs MUST at least support the DEFLATE and gzip compression algorithms

Requirement code: DR008
Applicable roles: API server developer
Standardization levels: TSA, FSA

The use of compression algorithms can reduce communication size. This is especially useful when
transferring large data objects.

The algorithms DEFLATE and gzip are widely used in HTTP communication.

10.2.9. | APIs MUST support the use of HTTP accept-encoding and
 content-encoding header fields for negotiating compression

Requirement code: DR009
Applicable roles: API client developer, API server developer
Standardization levels: TSA, FSA

The accept-encoding and content-encoding header fields are used to negotiate the compression
algorithms. The API client will use the accept-encoding header field to communicate which
compression algorithms are supported. The API server will use the content-encoding header field
to confirm which compression algorithm is used.

10.2.10. | JSON formatted content SHOULD comply to RFC8259 or its successor

Requirement code: DR011
Applicable roles: API server developer
Standardization levels: TSA, FSA

The design of JSON is described by IETF in RFC 8259. Any use of JSON SHOULD be compliant with
this RFC or its successor.

10.2.11. | APIs SHOULD be based on the NOTIFIED PULL exchange pattern
 rather than the PUSH exchange pattern

Requirement code: DR012
Applicable roles: API specifier
Standardization levels: TSA, FSA

When describing an API where data is being transferred to another party, the exchange pattern
‘NOTIFIED PULL’ SHOULD be used rather than PUSH. This way, the receiving party can decide
when or how the transferred data is received and processed.

63 API Requirements for Dutch Healthcare API design rules

10.2.12. | System APIs SHOULD be designed independent of specific use cases and
 types of client systems or users

Requirement code: DR013
Applicable roles: API server developer
Standardization levels: TSA, FSA

Making the system APIs independent of a specific use case encourages the reuse of these APIs.

10.2.13. | Process APIs SHOULD be designed to reuse System APIs

Requirement code: DR014
Applicable roles: API server developer
Standardization levels: TSA, FSA

Process APIs make use of the System APIs. It is encouraged to reuse already existing System APIs.

10.2.14. | Experience APIs SHOULD be based on Process APIs

Requirement code: DR015
Applicable roles: API server developer
Standardization levels: TSA, FSA

Experience APIs are by definition based on Process APIs, this SHOULD always be the case.

10.2.15. | System APIs SHOULD be based on the operations, messaging, or
 resource paradigm rather than the document paradigm

Requirement code: DR016
Applicable roles: API server developer
Standardization levels: TSA, FSA

To be fully atomic the document paradigm SHOULD be avoided in system APIs.

64 API Requirements for Dutch Healthcare API design rules

65 API Requirements for Dutch Healthcare API design rules

Code Requirement Applicable roles Standardization levels

DR-S001 SOAP APIs MAY use MTOM/ XOP for
formatting binary data

API specifier TSA, FSA

DR-S002 SOAP based API clients MUST support
MTOM/XOP formatted binary data

API client
developer

TSA, FSA

10.3 | SOAP

10.3.1. | APIs MAY use MTOM/XOP for formatting binary data

Requirement code: DR-S001
Applicable roles: API specifier
Standardization levels: TSA, FSA
Dutch National API strategy:

When a SOAP message contains a large binary object, it can be optimized for processing by using
MTOM/XOP. APIs MAY use MTOM/XOP to create a multipart MIME to link from the SOAP body to a
mime part which holds the binary data.

10.3.2. | API clients MUST support MTOM/XOP formatting of binary data

Requirement code: DR-S002
Applicable roles: API client developer
Standardization levels: TSA, FSA
Dutch National API strategy:

Design rule DR-S001 determined that an API may use MTOM/XOP when it believes it is necessary
to optimize processing of the message. To be able to use these APIs, API clients MUST support
MTOM/XOP as well.

10.4. | RESTful

The REST architectural style is centred around the concept of a resource. A resource is the key
abstraction of information, where every piece of information is named by assigning a globally unique
URI (Uniform Resource Identifier). Resources describe things, which can vary between physical
objects (e.g., a building or a person) and more abstract concepts (e.g., a permit or an event).

66 API Requirements for Dutch Healthcare API design rules

Code Requirement Applicable roles Standardization levels

DR-R001 APIs MUST use nouns to name
resources

API specifier TSA, FSA

DR-R002 APIs MUST use singular nouns to
name collection resources

API specifier TSA, FSA

DR-R003 APIs MUST hide irrelevant
implementation details

API server
developer

TSA, FSA

DR-R004 RESTful APIs MUST support both
JSON and XML formatting

API specifier TSA, FSA

DR-R005 RESTful API clients MUST at least
support JSON or XML formatting

API client
developer

TSA, FSA

DR-R006 RESTful APIs MAY support BSON
formatting

API specifier TSA, FSA

DR-R007 RESTful APIs MUST use the ACCEPT
HTTP header for content negotiation

API server
developer

TSA, FSA

DR-R008 Restful APIs MUST user the CONTENT-
type HTTP header for content
negotiation

API client
developer

TSA, FSA

10.4.1. | APIs MUST use nouns to name resources

Requirement code: DR-R001
Applicable roles: API specifier
Standardization levels: TSA, FSA
Dutch National API strategy: corresponds to API-05

Because resources describe things (and thus not actions), resources are referred to using nouns
(instead of verbs) that are relevant from the perspective of the user of the API.

A few correct examples of nouns as part of FHIR:

– Patient
– Observation
– AllergyIntolerance

10.4.2. | APIs MUST use singular nouns to name collection resources

Requirement code: DR-R002
Applicable roles: API specifier
Standardization levels: TSA, FSA
Dutch National API strategy:

Resources can be grouped into collections, which are resources in their own right and can
typically be paged, sorted and filtered. Most often all collection members have the same type,
but this is not necessarily the case. A resource describing multiple things is called a collection
resource. Collection resources typically contain references to the underlying singular resources.

A collection resource could still contain only one contained resource, therefore the path segment
describing the name of the collection resource MUST be written in the singular form.

Example of how to collect a collection of resources in FHIR:
https://api.example.org/Patient

https://api.example.org/Observation?code=http://loinc.org|29463-7

10.4.3. | APIs MUST hide irrelevant implementation details

Requirement code: DR-R003
Applicable roles: API server developer
Standardization levels: TSA, FSA
Dutch National API strategy: API-53

An API should not expose implementation details of the underlying application. The primary
motivation behind this design rule is that an API design must focus on usability for the client,
regardless of the implementation details under the hood. The API, application and infrastructure
need to be able to evolve independently to ease the task of maintaining backwards compatibility
for APIs during an agile development process.

A few examples of implementation details:
– The API design should not necessarily be a 1-to-1 mapping of the underlying domain or

persistence model
– The API should not expose information about the technical components being used, such as

development platforms/frameworks or database systems
– The API should offer client-friendly attribute names and values, while persisted data may

contain abbreviated terms or serializations which might be cumbersome for consumption

67 API Requirements for Dutch Healthcare API design rules

https://api.example.org/Patient

10.4.4. | APIs MUST support both JSON and XML formatting

Requirement code: DR-R004
Applicable roles: API server developer
Standardization levels: TSA, FSA
Dutch National API strategy:

JSON and XML both have their advantages and disadvantages. API clients can focus on either
standard for all their API calls when all APIs support both. Therefore, APIs MUST support both
JSON and XML formatting.

APIs MUST be able to convert consistently between the two. Converting from one to the other
and back to the first MUST result in the exact same resource.

10.4.5. | API clients MUST at least support JSON or XML formatting

Requirement code: DR-R005
Applicable roles: API client developer
Standardization levels: TSA, FSA
Dutch National API strategy:

As described in DR-R004, both JSON and XML will be supported from the APIs. API clients MUST
therefore at least support one of the two formats. In the end this means the focus can be on
either XML or JSON for all calls to available APIs.

10.4.6. | APIs MAY support BSON formatting

Requirement code: DR-R006
Applicable roles: API server developer
Standardization levels: TSA, FSA
Dutch National API strategy:

BSON are used to communicate JSON in a binary object. This is an innovative technology
that could improve performance in larger JSON objects. APIs MAY therefore support BSON
formatting.

68 API Requirements for Dutch Healthcare API design rules

69 API Requirements for Dutch Healthcare API design rules

10.4.7. | APIs MUST use the Accept header for content negotiation

Requirement code: DR-R007
Applicable roles: API server developer, API client developer
Standardization levels: TSA, FSA
Dutch National API strategy:

The HTTP header Accept is used to communicate which content types can be understood by the
API clients. Therefore, the API client MUST use the Accept header to communicate the content
types, while the API server MUST use the value to decide the response content type.

10.4.8. APIs MUST use the Content-Type header for content negotiation

Requirement code: DR-R008
Applicable roles: API client developer, API server developer
Standardization levels: TSA, FSA
Dutch National API strategy:

The HTTP header Content-Type is used to communicate which content type is used in
communication between client and server. Therefore, the API server MUST use the Content-Type
header to communicate the content type, while the API client MUST use the value to decide how
to process the response.

API security
11

70 API Requirements for Dutch Healthcare

11.1. | Generic

71 API Requirements for Dutch Healthcare API security

Code Requirement Applicable roles Standardization levels

SC001 API specifications MUST comply with
Dutch NCSC guidelines for web
applications

API specifier OA, TSA, FSA

SC002 API implementations MUST comply
with Dutch NCSC guidelines for web
applications

API server
developer

OA, TSA, FSA

SC003 API deployments MUST comply with
Dutch NCSC guidelines for web
applications

API server
deployer

OA, TSA, FSA

SC004 API deployments MUST comply with
Dutch NCSC guidelines for Transport
Layer Security

API server
deployer

OA, TSA, FSA

SC005 An API MUST provide audit logging
conforming to NEN7513

API server
developer

OA, TSA, FSA

SC006 Specifications for 'System APIs' MUST
use authentication models that are
not specific to a use case or (type of)
client or user

API specifier TSA, FSA

SC007 APIs MUST use fully standardized
models for identification and
authentication

API specifier FSA

SC008 All tokens used for client
authentication MUST be signed using
asymmetrical encryption

API specifier TSA, FSA

11.1.1. | API specifications MUST comply with Dutch NCSC guidelines for
 web applications

Requirement code: SC001
Applicable roles: API specifier
Standardization levels: OA, TSA, FSA

The Dutch governmental organization NCSC (National Cyber Security Centre) has specified
security guidelines for web applications. The API specifications MUST comply with these
guidelines.

Compliance check will be limited to a confirmation by the specifier.

72 API Requirements for Dutch Healthcare API security

11.1.2. | API implementations MUST comply with Dutch NCSC guidelines for
 web applications

Requirement code: SC002
Applicable roles: API server developer
Standardization levels: OA, TSA, FSA

The Dutch governmental organization NCSC (National Cyber Security Centre) has specified
security guidelines for web applications. The API implementations MUST comply with these
guidelines.

Compliance check will be limited to a confirmation by the server developer.

11.1.3. | API deployments MUST comply with Dutch NCSC guidelines for web
 applications

Requirement code: SC003
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

The Dutch governmental organization NCSC (National Cyber Security Centre) has specified
security guidelines for web applications. The API deployments MUST comply with these
guidelines.

Compliance check will be limited to a confirmation by the server deployer.

11.1.4. | API deployments MUST comply with Dutch NCSC guidelines for
 Transport Layer Security

Requirement code: SC004
Applicable roles: API server deployer
Standardization levels: OA, TSA, FSA

The Dutch governmental organization NCSC (National Cyber Security Centre) has specified
guidelines for use of TLS within web applications. The API deployments MUST comply with these
guidelines.

The status of the used versions, algorithms, key size & choice of
groups and options SHOULD at least be sufficient. The status ‘insufficient’ is not allowed.

Compliance check will be limited to a confirmation by the server deployer.

73 API Requirements for Dutch Healthcare API security

11.1.5. | An API MUST provide audit logging conforming to NEN7513

Requirement code: SC005
Applicable roles: API server developer
Standardization levels: OA, TSA, FSA

The audit logging should conform to what is described in NEN7513, at least the content matches
to what is described in the same NEN7513.

11.1.6. | Specifications for ‘System APIs’ MUST use authentication and authorization
 models that are not specific to a use case or (type of) client or user

Requirement code: SC006
Applicable roles: API specifier
Standardization levels: TSA, FSA

To ensure the disconnection between System APIs and other types of APIs, the authentication
and authorization models used by System APIs cannot be specific to a use case or (type of) client
or user.

11.1.7. | APIs MUST use fully standardized models for identification and
 authentication

Requirement code: SC007
Applicable roles: API specifier
Standardization levels: FSA

For both identification and authentication, a fully standardized model MUST be used in the API
specification.

11.1.8. | All tokens used for client authentication MUST be signed using
 asymmetrical encryption

Requirement code: SC008
Applicable roles: API specifier
Standardization levels: TSA, FSA

Tokens that are used for client authentication MUST be signed using asymmetrical encryption.

74 API Requirements for Dutch Healthcare API security

11.1.9. | APIs MUST use generic services/functions

Requirement code: SC009
Applicable roles: API specifier
Standardization levels: TSA, FSA

APIs MUST use generic services/functions when they are nationally prescribed for use.
Examples of generic services/functions could be:
– Patient Consent
– Addressing
– Authorization models

11.2. | SOAP

Code Requirement Applicable roles Standardization levels

SC-S001 APIs SHOULD use WS-Security to
ensure message confidentiality and
integrity as well for adding security
tokens

API specifier TSA, FSA

SC-S001 APIs SHOULD use the SAML Token
Security Model

API server
developer

OA, TSA, FSA

11.2.1. | APIs SHOULD use WS-Security to ensure message confidentiality
 and integrity for adding security tokens

Requirement code: SC-S001
Applicable roles: API specifier
Standardization levels: TSA, FSA

SOAP APIs SHOULD use WS-Security to ensure message confidentiality and integrity for adding
security tokens.

11.2.2. | APIs SHOULD use the SAML Token Security Model

Requirement code: SC-S002
Applicable roles: API specifier
Standardization levels: TSA, FSA

SAML is commonly used in SOAP APIs. Therefore the SOAP APIs SHOULD use the SAML Token
Security Model.

75 API Requirements for Dutch Healthcare API security

11.3. | RESTful

Code Requirement Applicable roles Standardization levels

SC-R001 APIs MUST comply with RFC7523 for
client authentication and for
requesting oAuth2 access tokens

API specifier TSA, FSA

SC-R002 APIs MUST use oAuth2 for
authorization flows

API specifier TSA, FSA

SC-R003 APIs MAY use OpenID Connect to
achieve Single-Sign-On when
requesting oAuth access tokens
whenever this doesn't conflict with
existing regulations

API specifier TSA, FSA

SC-R004 JWT tokens used for client
authentication and authorization
grants MUST comply with RFC7515
and RFC7518

API specifier TSA, FSA

11.3.1. | APIs MUST comply with RFC7523 or its successor for client
 authentication and for requesting oAuth2 access tokens

Requirement code: SC-R001
Applicable roles: API specifier
Standardization levels: TSA, FSA

When using REST for backchannel communication the APIs MUST comply with RFC7513 or its
successor for client authentication and for requesting at least oAuth 2.0 access tokens.

RFC7513 describes the JSON Web Token profile for oAuth 2.0 Client Authentication and
Authorization Grants.

11.3.2. | APIs SHOULD use OpenID Connect to achieve Single-Sign-On when
 requesting oAuth access tokens

Requirement code: SC-R002
Applicable roles: API specifier
Standardization levels: TSA, FSA

As far as existing regulations allow, OpenID Connect SHOULD be used to achieve Single-Sign-On
when requesting oAuth access tokens.

76 API Requirements for Dutch Healthcare API security

11.3.3. | JWT tokens used for client authentication and authorization grants
 MUST comply with RFC7515 and RFC7518, or its successors

Requirement code: SC-R003
Applicable roles: API specifier
Standardization levels: TSA, FSA

When using JWT tokens for client authentication and authorization grants, they MUST comply
with RFC7515 (or its successor) and RFC7518 (or its successor).

RFC7515 describes the JSON Web Signature, a data structure representing a digitally signed or
MACed (Message Authentication Codes) message.

RFC7518 describes the JSON Web Algorithms

Health
Information
Standards
compliance
12

77 API Requirements for Dutch Healthcare

78 API Requirements for Dutch Healthcare Health Information Standards compliance

Code Requirement Applicable roles Standardization levels

IS001 In order to be fully standardized, an
API specification MUST be approved
by an authoritative body

API specifier FSA

IS002 In order to be fully standardized, an
API implementation MUST be
approved by an authoritative body
during a formal testing and
qualification process

API server
developer

FSA

IS003 All API input and output data SHOULD
comply with ZIB specifications

API specifier FSA

12.1. | In order to be fully standardized, an API specification
 MUST be approved by an authoritative body

Requirement code: IS001
Applicable roles: API specifier
Standardization levels: FSA

An API specification is ‘fully standardized’ when it is approved as a standard by an authoritative
body.

12.2. | In order to be fully standardized, an API implementation
 MUST be approved by an authoritative body during a
 formal testing and qualification process

Requirement code: IS002
Applicable roles: API server developer
Standardization levels: FSA

An API implementation is fully standardized when it is approved by a national standardization
organization, or by the national branch of an international standardization organization.
Approval is given only as the result of a formal test or qualification process. Proof must be
provided for any compliance claim made by the API server developer.

79 API Requirements for Dutch Healthcare Health Information Standards compliance

12.3. | All API input and output data SHOULD comply with ZIB
 specifications

Requirement code: IS003
Applicable roles: API specifier
Standardization levels: FSA

API input data, such as parameters and post data, SHOULD comply with ZIB specifications where
applicable. Applicable refers to input or output data that represents general health and care
concepts.

API output data, such as resources, documents or procedure results SHOULD comply with ZIB
specifications where applicable.

If no ZIB specification is available that governs the contents of certain API input or output but the
input or output data represents general health and care concept, the API specifier MAY submit a
ZIB change request to the Nictiz ZIB centre.

Nictiz is de Nederlandse kennisorganisatie voor digitale informatievoorziening in de zorg.

Nictiz ontwikkelt een visie op het zorginformatiestelsel en de architectuur die dat stelsel onder-

steunt. We ontwikkelen en beheren standaarden die digitale informatievoorziening mogelijk

maken en zorgen ervoor dat zorginformatie eenduidig kan worden vastgelegd en uitgewisseld.

Daarnaast adviseren we en delen we kennis over digitale informatievoorziening in de zorg.

Daarbij kijken we niet alleen naar Nederland, maar ook naar wat er internationaal gebeurt.

Nictiz | Postbus 19121 | 2500 CC Den Haag | Oude Middenweg 55 | 2491 AC Den Haag
070 - 317 34 50 | www.nictiz.nl

https://creativecommons.org/licenses/by-sa/4.0/

https://www.nictiz.nl/
https://creativecommons.org/licenses/by-sa/4.0/

	Index
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Knop 8:
	Knop 9:
	Knop 2:
	Pagina 2:
	Pagina 3:
	Pagina 4:
	Pagina 5:
	Pagina 6:
	Pagina 7:
	Pagina 8:
	Pagina 9:
	Pagina 10:
	Pagina 11:
	Pagina 12:
	Pagina 13:
	Pagina 14:
	Pagina 15:
	Pagina 16:
	Pagina 17:
	Pagina 18:
	Pagina 19:
	Pagina 20:
	Pagina 21:
	Pagina 22:
	Pagina 23:
	Pagina 24:
	Pagina 25:
	Pagina 26:
	Pagina 27:
	Pagina 28:
	Pagina 29:
	Pagina 30:
	Pagina 31:
	Pagina 32:
	Pagina 33:
	Pagina 34:
	Pagina 35:
	Pagina 36:
	Pagina 37:
	Pagina 38:
	Pagina 39:
	Pagina 40:
	Pagina 41:
	Pagina 42:
	Pagina 43:
	Pagina 44:
	Pagina 45:
	Pagina 46:
	Pagina 47:
	Pagina 48:
	Pagina 49:
	Pagina 50:
	Pagina 51:
	Pagina 52:
	Pagina 53:
	Pagina 54:
	Pagina 55:
	Pagina 56:
	Pagina 57:
	Pagina 58:
	Pagina 59:
	Pagina 60:
	Pagina 61:
	Pagina 62:
	Pagina 63:
	Pagina 64:
	Pagina 65:
	Pagina 66:
	Pagina 67:
	Pagina 68:
	Pagina 69:
	Pagina 70:
	Pagina 71:
	Pagina 72:
	Pagina 73:
	Pagina 74:
	Pagina 75:
	Pagina 76:
	Pagina 77:
	Pagina 78:
	Pagina 79:

	Knop 3:
	Pagina 2:
	Pagina 3:
	Pagina 4:
	Pagina 5:
	Pagina 6:
	Pagina 7:
	Pagina 8:
	Pagina 9:
	Pagina 10:
	Pagina 11:
	Pagina 12:
	Pagina 13:
	Pagina 14:
	Pagina 15:
	Pagina 16:
	Pagina 17:
	Pagina 18:
	Pagina 19:
	Pagina 20:
	Pagina 21:
	Pagina 22:
	Pagina 23:
	Pagina 24:
	Pagina 25:
	Pagina 26:
	Pagina 27:
	Pagina 28:
	Pagina 29:
	Pagina 30:
	Pagina 31:
	Pagina 32:
	Pagina 33:
	Pagina 34:
	Pagina 35:
	Pagina 36:
	Pagina 37:
	Pagina 38:
	Pagina 39:
	Pagina 40:
	Pagina 41:
	Pagina 42:
	Pagina 43:
	Pagina 44:
	Pagina 45:
	Pagina 46:
	Pagina 47:
	Pagina 48:
	Pagina 49:
	Pagina 50:
	Pagina 51:
	Pagina 52:
	Pagina 53:
	Pagina 54:
	Pagina 55:
	Pagina 56:
	Pagina 57:
	Pagina 58:
	Pagina 59:
	Pagina 60:
	Pagina 61:
	Pagina 62:
	Pagina 63:
	Pagina 64:
	Pagina 65:
	Pagina 66:
	Pagina 67:
	Pagina 68:
	Pagina 69:
	Pagina 70:
	Pagina 71:
	Pagina 72:
	Pagina 73:
	Pagina 74:
	Pagina 75:
	Pagina 76:
	Pagina 77:
	Pagina 78:
	Pagina 79:

	Knop 4:
	Pagina 2:
	Pagina 3:
	Pagina 4:
	Pagina 5:
	Pagina 6:
	Pagina 7:
	Pagina 8:
	Pagina 9:
	Pagina 10:
	Pagina 11:
	Pagina 12:
	Pagina 13:
	Pagina 14:
	Pagina 15:
	Pagina 16:
	Pagina 17:
	Pagina 18:
	Pagina 19:
	Pagina 20:
	Pagina 21:
	Pagina 22:
	Pagina 23:
	Pagina 24:
	Pagina 25:
	Pagina 26:
	Pagina 27:
	Pagina 28:
	Pagina 29:
	Pagina 30:
	Pagina 31:
	Pagina 32:
	Pagina 33:
	Pagina 34:
	Pagina 35:
	Pagina 36:
	Pagina 37:
	Pagina 38:
	Pagina 39:
	Pagina 40:
	Pagina 41:
	Pagina 42:
	Pagina 43:
	Pagina 44:
	Pagina 45:
	Pagina 46:
	Pagina 47:
	Pagina 48:
	Pagina 49:
	Pagina 50:
	Pagina 51:
	Pagina 52:
	Pagina 53:
	Pagina 54:
	Pagina 55:
	Pagina 56:
	Pagina 57:
	Pagina 58:
	Pagina 59:
	Pagina 60:
	Pagina 61:
	Pagina 62:
	Pagina 63:
	Pagina 64:
	Pagina 65:
	Pagina 66:
	Pagina 67:
	Pagina 68:
	Pagina 69:
	Pagina 70:
	Pagina 71:
	Pagina 72:
	Pagina 73:
	Pagina 74:
	Pagina 75:
	Pagina 76:
	Pagina 77:
	Pagina 78:
	Pagina 79:

	Knop 14:
	Knop 15:
	Knop 16:
	Knop 26:
	Knop 27:
	Knop 28:
	Knop 29:
	Knop 35:
	Knop 36:
	Knop 37:
	Knop 40:
	Knop 41:

